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Extended x-ray absorption fine structure (EXAFS) model functions have

been calculated for the L II edge in Pt metal. All single, double and triple

scattering contributions were taken into account, using a recently developed

multiple scattering formalism. Theoretical values for the scattering

amplitude, phase, and Debye-Waller factor and the "universal curve" for the

electron mean free path have been used. Comparison to experimental data gives

an estimate of the limitations in the current formalism, and shows that

multiple scattering effects are important in Pt only at radial distances

corresponding to fburth shell nearest neighbors.
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I. * DIRODUCTIOW

Extended x-ray-absorption fine-structure (EXAFS) measurements have

been used in the extraction of structural information in a variety of

materials. 1 The single-scattering formula
2

*X(k) = lfi ~ e- 2r/X 2 sin[2kr + (ir,k)] 1

kr2

is commonly used to extract information about coordination number, radial

distribution, and other relevant parameters. Analysis often involves Fourier-

filtering; I. e. the Fourier- trans formation of data, filtering out a specific

range in the radial distribution and inverse transform of this range. The

region commonly used for the inverse transform usually corresponds to the

first or second shell of neighbors, since multiple scattering of the electron

emitted from the x-ray-absorbing atom is expected at higher radial distances.

To use all the data, and to estimate the accuracy of the single scattering

equation, it is important to know the effects of multiple scattering. This is

specially true in the case of metal structures, since one of the major

applications of EXAFS-studies is to small metal clusters in supported

catalysts. Recent work has been reported on three-atom molecules in which

multiple scattering effects were used for bond-angle determinations.3,.
5

Multiple scattering effects due to the shadowing affect on the fourth nearest
0

neighbors by the second neighbors in metals with fcc structure have been

recognized. 6  & detailed analysis of these effects has not been carried out,

partly because theories on multiple scattering effects were not complete.

The present paper examines the Importance of multiple scattering and

gives an estimate of the accuracy of theoretical calculations. All double

scattering contributions to EXAFS are calculated for Pt metal using the

-.-- ' . .
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multiple scattering formalism introducted by Lee and Pendry, 6 and later

developed by Too3 and by Boland et al.7 Also, all triple scattering

contributions are determined where the total scattering path length does not

exceed that of fourth shall single scattering. Comparison of the calculated

EXAYS function with the measured L,,, edge of Pt metal gives an estimate of

the photoelectron energy range over which EXA1S theories are applicable. Good

agreement is found at energies higher than 50 eV above absorption threshold,

which shows the limitation of the theories used.

We used unpublished angle dependait phase and amplitude functions

8 3,9calculated by Teo8 using the programs described previously. Published

values of these quantities are given only to k > 4 because approximations made

in their derivation are expected to cause progressively greater inaccuracy at

low energies. ge used Too's calculated values down to k-0.94 2-1 and

extrapolated to k-0 271 in order to test the multiple scattering theory and

calculated quantities over the full range of k. As expected, the calculated

EXAFS function becomes less accurate at low energies.

II. TIOY

The multiple scattering expressions for the EXAS given by Teo and

Rcland et al. 7 differ only by the presence of a geometrical factor in the

7double scattering term. We adopt the form that includes it, which, in the

case of a polycrystalline sample, is given by:

If (wr,k)jI
X(k) - - I n 2 2

ni,j kr2  sin[2kr 
+ 26t(k) + On(Wk)]

n

+kr 2 f (0.k) I Ij (ak) IainEk(ri+r+ij) + 2(k) + k) + k) (2)

i + 26 ,k +i *1(Bjij X)

If+ ik) IIf (a,k) 12
+2 2  sin[2k(rj+ri ) + 26 (k) + *i(w,k) + 20 (a,k)]}

.kr2 ri
.i i



where the symbols have the usual meanings: k=[2m(E-E )/,fi2 1/2 is the

photoelectron wave vector; IfO ,k)l the scattering amplitude; *(a,k) the

scattering phase shift, and k the phase shift due to the central atom

potential. The first term is the usual single scattering expression, whereas

the second term corresponds to consecutive scattering by atoms i and J, and

vice versa. The third term is the result of photoelectron scattering from

atom j to atom i, and back to atom j again. To account for inelastic losses

of electrons we multiply each scattering path by exp(r/X), where X is the

electron mean free path and r the total electron path length. A further

correction due to thermal vibrations is the inclusion of the Debye-Waller

2 2 2factor exp(-2k a ), with the mean squared displacement a dependent on the

specific scattering path.

The scattering amplitude and phase functions used in the equation

above, and shown in Figs. 1 and 2 were those calculated by Teo8 at twenty

different k-values between 0.9449 A and 15.1178 A , for scattering angles

between 0* to 180*, in 5* steps. These values were manually replotted and

interpolated on a 78 point grid.

The Pt L edge central atom phase shift 6 (k) values were those
III Z-2

calculated by Teo and Lee 9 , extended to low k-values by inclusion of
R

unpublished calculations. Although these calculations are based on certain

assumptions, excellent agreement has been found with experimentally extracted

phase shift data.
10

For the electron mean free path X the value of 10 1 was tried at the

beginning of this work as a rough estimate. However, much better agreement

with experimental data was achieved by using the universal curve11 for X,

which was used in a tabular form with linear interpolation between points in

the range 0.9449 1 - 15.1178 1 (Table 1). It should be noted that this
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I
approach is not consistent with the derivation of the febye-Valler factor,

where a k-independent mean free path is assumed. 12  Most of the variation in

A is at low energies (below 50 eV) where we might expect some disagreement

with experimental data.

Our previous study'0 shows that anharonic disorder effects in Pt are

negligible at 100 K and calculations based on the Debye approximation are in

excellent agreement with experimentally determined disorder. The Debye-Waller

factor was calculated in this approximation, where the mean square

displacement (MSD) is given by
13'14'15

0D/T3I1 + 2 dx] (3)

00 MW~ 4+%T eX-(3D D 0a 1

Since EXAFS is only sensitive to relative displacements, the mean square

relative displacement (MSRD) is given by

a2  - 2 a 2(1-Y) (4)

with the correlation factor y calculated by:

T

, 1 3k 1-cos(qD-r) T eD/T sin(qDD rg x 5
2 a~~ n D + TD dx] (5)
2 b2 2 q qr 8 ~ f-a. D 2qD r aD 0 s'

where the symbols have the following meaning: e -Oebye temperature,

- k eD/ A Debye frequency and V(6rn/v)1 /3 the nebye wavenumber. Since

the correlation is dependent on the radius, the MSRD is also dependent on the

scattering path. The parameters used are eDm240 KA , n/vm6.62x10-28 M-3, 15

1-195 mu with a corresponding 1.577 X71. The calculated results are given

in Table II.
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In Table III all the parameters needed for calculating the EXAFS

equation are shown. Each scattering path is listed separately and is labeled

in accordance with the nomenclature used by Lee and Pendry.6  1-2-1 indicates

a path which goes from the origin to atom J, which is a first shell distance,

to first shell atom i, where the distance between j and i is that

corresponding to a second shell, and back to the origin. Similarly, 2-1-3

indicates a path from the origin to second shell atom j and then to third

shell atom i which is in the first shell of atom J. All the considered triple

scattering paths are 1-1-1-1 paths, so they are labeled Ma to Mg, dependent on

the scattering path. For each scattering path, Table III gives the scattering

angle, the total distance traveled (corrected for thermal expansion at 100 K),

and the angle between r1 and rj. Since there is more than one atom in the

different shells, each scattering path has to be multiplied by the number N of

different scattering sequences available to the photoelectron. In the case of

single scattering, this is just the number of nearest neighbors in the

respective shell, whereas in multiple scattering cases many more equivalent

scattering paths are possible. Also included in the table (but not in the

final talculation) is single scattering by atoms in the fourth shell and the

double scattering 1-4-1 and 1-1-4 paths. All these possibilities are

nonphysical, since the second shell atoms shadow the fourth shell atoms. For

the fourth shell atoms, the operative scattering paths are the 1-1-1-1 paths.

III. CALCULATIONS

The contribution of all the different multiple scattering paths are

shown in Fig. 3. The solid line corresponds to the Ma path, multiplied by 0.6

(see Section IV), and is clearly the strongest multiple scattering

contribution. Even by adding up the calculated functions from all double
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scattering paths, the Ma contribution is still dominant (Fig. 4). The reason

for the small amplitude of most of the double and triple scattering paths is

the 1/r 2 dependence of the EXAFS, and also the low values of the

backscattering amplitude at high scattering angles. Because the scattering

amplitude peaks in the forward direction, a significant contribution from the

Ma and Md paths to the EXAFS is expected. All the other triple scattering

contributions are orders of magnitude weaker and can be neglected. The Md to

Mg paths are only approximations, since the central atom is involved twice,

the second time as an ion (ionized when the photon was absorbed), so that the

scattering potential and with it the scattering amplitude and phase is

expected to be different compared to the non-ionized case. To account for

this circumstaace, we allow, in modeling the data, the energy threshold F to

be different for each scattering path.

IV. RESULTS

The calculated EXAFS functions were compared to experimental data at

the Pt L111 edge. The complication which arises from the fact that the

initial p-state can go to a final state of s or d symmetry is of only minor

concern, because it has been shown from theoretical calculations9 that

transitions to the d final states are generally favored by a factor of 50 over

the s final states, so that we can use the above equations with the Z-2

central atom phase shift. The experimental EXAFS oscillations were isolated

by using a cubic spline technique containing three sections. The data were

then normalized to the L II component of the smooth absorption background by

using the x-ray absorption coefficient parameterization given by McMaster.
7

The limits of the single scattering approximation can be seen by

Fourier-filtering the data in r-space and comparing it with the corresponding

model function. Figure 5 shows the filtered spectra (k weighting), where the
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allowed inverse transform range was successively increased from the radial

distance corresponding to the first shell to all the first four shells. There

are no multiple scattering effects expected in the radial range up to the

third shell (5 ), except some negligible contributions from the 1-1-1, 1-2-1

: ,and 2-1-1 paths (Table ITI), and a comparison of the data with the summed

single scattering contribution from the first three shells shows excellent

agreement (Fig. 5 A-C). When the fourth shell is included in the filtering

process, the single scattering approximation is not appropriate and the

corresponding single scattering calculation does not model all the features in

the data (Fig. 5 D).

The energy threshold was determined by adjusting E0 until the Fourier-

filtered first shell EXAFS gave agreement in the phase with the calculated

first shell model function. The E0 value is 6 eV above the inflection point.

In adding up all the contributions from multiple scattering paths, E 0 was

shifted to -12 eV for the Ma and Md paths. To get reasonable agreement with

experimental data the FXAFS function corresponding to the Mfa path had to be

multiplied by 0.6, indicating that the forward scattering amplitude is not as

strong as the calculated amplitude functions, which also have the greatest

inaccuracy in the forward scattering case. All the other contributions were

directly added without any further weighting. Figure 6 shows a comparison of

the experimental data to the calculated single scattering contribution and to

the sum of all the different scattering paths.

To model the whole Pt L IT absorption edge, the calculated EXAFS was

superimposed on an edge function. 18  The EXAFS spectra with the added edge is

broadened by first convolving it with a Lorentzian broadening function whose

width is the sum of the inverse lifetimes of the core hole and the excited

electron, and then further convolution with a Gaussian broadening function



whose width accounts for the instrumental resolution (2 eV). A resonance at

-2.8 eV with a width of 6 eV gives the best agreement to the Pt white line,

together with a Lorentzian broadening of the edge by a width of 4 eV (Fig. 7).

Together with the appropriately broadened EXAFS oscillations the normalized

model function compared to the experimental data is shown in Fig. 8. There is

good agreement above 50 eV and at the edge, but disagreement between 0-50 eV.

V. DISCUSSION

The derivation of the multiple scattering formula of Eq. 2 assumed

that ':he photoelectron was at sufficiently high energy (approximately three

times the plasma frequency; > 70 eV in Pt) so that the attractive potential of

the central atom nucleus became negligible. This may explain in part the

disagreement at low photoelectron energy, where the central atom potential

strongly affects the excited electron. The theoretical phase and amplitude

functions are also in question at low energies. The mean free path increases

very rapidly at low energy, as does the Debye-Waller factor. Therefore all

the contributions from different scattering paths have very large amplitudes

near the edge and, due to the 2kr term in the phase, oscillate very rapidly,

which results in large changes in the model function from only very small

(0.1 eV) changes in threshold energy for certain scattering paths.

At higher energy it was possible to model all the features of the

EXAFS spectra. Each small feature could be identified although not always

precisely correct in position and amplitude. The three atom scattering path

Ma was the most important multiple scattering effect and was clearly

recognizable in the EXAFS spectra. This may be of special importance for

small metallic clusters (in supported metal catalysts, for example), where the

clusters may be so small or so shaped as to give different multiple scattering

contributions than the bulk metal. By modeling different structures and sizes
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and then comparing them to the experimental data it should be possible to

extract structural information directly from the unfiltered oscillations.

Figure 6 shows that there are some features in the data which are not present

in the calculated spectra with the correct amplitude. This is an indication

that even with the multiple scattering approximation used here with its

attendant theoretical parameters there are still small but significant

differences from experimental data.

VI. CONCLUSION

The effects of multiple scattering in Pt metal are only important in

the fourth shell region. Multiple scattering contributions corresponding to

second and third shell neighbor distances are very weak and can be neglected.

At total scattering distances corresponding to the fourth shell, the major

contribution to the EXAFS comes from the forward scattering by the second

nearest neighbor and backscattering by the fourth shell. This com;,nent was

clearly identifiable in the experimental data. Generally good agreement with

EXAFS data (E > 50 eV) was obtained by using the multiple scattering formalism

of Eq. 2 and the theoretical angle dependent phase shifts and scattering

amplitudes of Teo.
3'8
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TABLF 1. Electron Mean Free Path

k(A )XA

0.9449 100.

1.8897 11.69

2.8346 6.11

3.7795 5.15

4.2519 5.21

4.7243 5.47

5.1967 5.80

5.6692 6.10

6.1416 6.49

6.6140 6.95

7.0865 7.35

7.5589 7.71

8.5038 8.66

9.4486 9.38

10.3935 10.28

11.3384 11.10

12.2832 11.69

13.2281 12.56

14.1729 13.28

15.1178 14.05

A~
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I
TABLE II. Disorder Calculation Results for

Pt Metal at 100 K

r(A) (q r) 2 y 2

2.773 4.372 1.490 0.3373 1.975

3.922 6.184 1.490 0.1891 2.417

4.805 7.576 1.490 0.1731 2.465

5.546 8.745 1.490 0.1680 2.480

02 and 2 in (10- 3 2)



TABLE III. Multiple Scattering Parameter for Pt.

A. Single Scattering

Shell rtotal
a  C2 ba

1. 5.538 1.97 12

2. 7.832 2.42 6

3. 9.595 2.46 24

4. 11.076 2.48 12

B. Double Scattering

Scattering Path r total a a2 b N Scattering Angle 8 c

1-1-1 8.307 3.9 48 120 120 60

1-2-1 9.454 3.9 24 135 135 90

1-1-2 9.454 3.9 48 90 135 45

1-3-i 10.335 3.9 48 150 150 120

1-1-3 10.335 3.9 96 60 150 30

1-4-1 11.076 3.9 12 180 180 180

1-1-4 11.076 3.9 24 0 180 0

1-2-3 11.482 3.9 48 90 145 55

2-1-3 11.482 3.9 48 90 125 35

2-3-1 11.482 3.9 &8 145 55 90

------.---------------------
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C. Triple Scattering

a 2b
Scattering Path r total a N Scattering Angle e C

Ma 11.076 4.455 12 0 180 0 0

Mb 11.076 4.455 24 90 180 90 0

Mc 11.076 4.455 48 120 180 120 0

Md 11.076 4.455 12 180 0 180 180

Me 11.076 4.455 12 180 180 180 0

Mf 11.076 4.455 24 180 120 180 120

Mg 11.076 4.455 24 180 60 180 60

a r total in(A)

b a2 in (10-312

c e, the central angle, is defined to be the angle between radius

vectors from the central atom to the two neighboring atoms in the

three-atom problem (cf. Ref. 7).

F
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Captions for Figures

FIG. 1. The scattering amplitude F(a,k) for different scattering angles:

06(0), 600(&), 900(O), 1200(O), 1500(O), and 1800().

FIG. 2. The scattering phase *(ct,k) for different scattering angles: 0 3),

60(), 90'(O), 120 (O), 150*(O), and 1800(4).

FIG. 3. Calculated EXAFS spectra for different scattering paths: solid line

corresponds to Ma path, the dashed lines correspond to the different

double scattering paths.

FIG. 4. Calculated EXAFS spectra: single scattering contributions (solid

line), double scattering contributions (short dashed line), and the

triple scattering contributions (long dashed line).

FIG. 5. Comparison of Fourier-filtered experimental data (solid line) with

calculated single scattering, EXAFS spectra (also Fourier-filtered)

(dashed line). The radial distance in the filtering corresponds to

(A) first, (B) second, (C) third, and (D) fourth shell.

FIG. 6. Comparison of experimental EXAFS spectrum (solid lines) to (A)

calculated single scattering involving the first three shells,

(dashed line) and (B) sum of single, double and triple scattering

contributions, including fourth shell (dashed line).

FIG. 7. Experimental Pt LIII absorption edge (solid line) together with the

fit (short dashed line) to the sum of the Lorentzian resonance

(sedium dashed line) and step functions (long dashed line).

FIG. 8. Experimental PT LIII absorption edge (solid line) together with the

calculated spectra (dashed line).
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